Understanding
Persistent Data
Structures

Lesley Lai
@LesleyLaib

http://lesleylai.info/

Referential transparency

Referential transparency

e An expression always evaluates to the same result in
any context

Referential transparency

e An expression always evaluates to the same result in
any context

e Make both you and the compiler easier to reason about
the code

Referential transparency

e An expression always evaluates to the same result in
any context

e Make both you and the compiler easier to reason about
the code

e \What we want to achieve

Referential transparency

Referential transparency

e Not True when combine with mutation

Referential transparency

e Not True when combine with mutation
e Shared mutable states are hard to reason about

Referential transparency

e Not True when combine with mutation
e Shared mutable states are hard to reason about

xs = [1, 2, 3];

yS = XS;
console.log(xs);
ys[0] = 0;
console.log(xs);

Persistent data
structures

e Old values are preserved
e First studied as imperative data structures

Persistent data
structures

Level of persistency

Persistent data
structures

Level of persistency

e partially persistent

Persistent data
structures

Level of persistency

e partially persistent
o fully persistent

Persistent data
structures

Level of persistency

e partially persistent
o fully persistent
e confluently persistent

mmutable Array

ImmutableArray =
set (arr : 'a array) (pos : int) (: 'a) =
(pos >= 0) && (pos < (Array.length arr))
copied = Array.copy arr
Array.unsafe set copied pos ;
Some copied

None

x = [|1;2;3;4;5]]
y = ImmutableArray.set x 0 42

, Immutable Array
\
1]2[3]4af5]6]7[8]9]

, Immutable Array
\
1]2[3]4af5]6]7[8]9]
1[813[4afs5]6]7[8]9]
7\

X1

, Immutable Array

\
(1[2]7 alsfe]7) T9]

F_l

X1

Boxed Type

Immutable Array

e The most efficient iteration and
random access

e Compact

e All manipulations are O(n)

STARECAT.COM

Lists

X0

let x0 = [1]

Lists

X1 x0

let x1 =

SRR o

3 :: 2 :: x0

Lists

X2

let x2 =
let xO = [1] 1in
let x1 = 3 2 :: x0 1in

4 . x1

Lists

X2

let x3 =
let xO = [1] 1in
let x1 = 3 2
let x2 = 4 x1 1n

5 :: x1

List Implementaion

'a myList =
| Nil
| Cons 'a * 'a myList

Using List

Pattern match on the inductive definition.
EQ:

map (func: ('a -> 'b)) (list: 'a myList): 'b myList =
helper xs acc =
XS
| Nil -> acc
| Cons (head, tail) -> helper tail (Cons (func head, acc))

helper list Nil

Prefer higher-order
functions (map/fold/...) to
raw loop/recursion

But don't over generalize

["a"; "b"; "c"; "d"]
1> ([1; 2; 3; 4]

|> List.fold left2 (acc x y -> (x, y) :: acc))
|> List.rev

VS

zlp XS yS
= List.fold left2 (acc x y -> (x, y) :: acc)
|> List.rev;

XS yS

zip ["a"; ||b||; llCll; lld"] [1; 2; 3; 4]

List Operations

O(1) O(n)
e Prepend e Concat
e Head e |nsert
e Tail e Append
e Random access
e Update
e Map
o filter

e foldl, foldr

List Performance

Your lists are stacks. Using
them as "random accessing
sequence” is wrong!

List Performance

Don't do the following:

List.nth 1lst 9

if List.length xs == 0
else
reverse (xs : 'a list) : 'a list =
XS
| ->

| head :: tail -> (reverse tail) @ [head]

Relaxed Radix Balanced Tree

RRB-Trees: Efficient Immutable Vectors

Phil Bagwell

EPFL

Tiark Rom

{first.last}Qepfl.ch

Abstract

Immutable vectors are a convenient data structure for functional
programming and part of the standard library of modern languages
like Clojure and Scala. The common 1mplsment.lllon is based on
wide trees with a fixed number of children per node, which allows
fast indexed lookup and update operations. In this paper we ex-
tend the vector data type with a new underlying data structure, Re-
laxed Radix Balanced Trees (RRB- and show how th
ture allows immutable vec oncatenation, insert-at and splits in
O(logN) time while maintaining the index, update and iteration
speeds of the original vector data structure.

uc-

1.

Immutable data structures are a Lon\ement

the problems of ¢ ronment.

Immutable linked lis rved functional programming well

for decades but their sequential nature makes them unsuited for

parallel processing: le Steele mnmu\]v oncluded his ICFP’09

. New data structures with

d constant factors are needed

that ullm\ to break down input dum for parallel processing and to
efficiently reassemble computed results.

Introduction

y to manage some of

Phil Bagwell
RRB-Trees: Efficient Immutable Vectors

poses, programmer
constant time”.

However parallel processing requires efficient vector

nation, splits and inserts at a given index, which are not e;

ported by the structure. The work presented in this paper extends

the underlying vector structure to support concatenation and inserts

) rather than linear time without compromising the per-

isting operations. This new data structure lends

nt parallelization of common types of com-

ctor can be split into partitions that can then be

can consider all the operations as “effectively

concate-

prehensic
% ed in parallel. For many common operations such as filter,

the size of the individual p: on results is not known a priori. The
resulting sub-vectors can be concatenated to return a result vector
without linea is way the benefits of parallel process
ing are not lost in assembling the result:

Although the present work was targeted at the programming
language Scala, the data structure is applicable in other language
environments such as Clojure, C, C++ and so on. Other use cases
include implementations specialized to character strings that would
e.g. facilitate template-based web page gener

In the remainder of this paper we will use the term vector to
refer to the 32-way branching data structure found in Scala and
Clojure.

https://infoscience.epfl.ch/record/169879/files/RMTrees.pdf

Radix Balanced Tree

Radix Balanced Tree

Implement a "Vector", "Dynamic Array"

Radix Balanced Tree Search

Vector.get 17

17 — 0100 01

Radix Balanced Tree Search

Vector.get 17

17 — 0100 Ot

Radix Balanced Tree Search

Vector.get 17

17 — 0100 01

Radix Balanced Tree Search

Vector.get 17

17— 0100

Radix Balanced Tree Update

Vector.set 17 "R"

o

Radix Balanced Tree Update

Vector.set 17 "R"

Radix Balanced Tree Update

Vector.set 17 "R"

Relaxed Radix Balanced Tree

RRB-tree Operations

O(log(n))

Random access
Update
Append

Slice left/right
@e]pler=1

Insert

Prepend

Hash Array Mapped Trie

Ideal Hash Trees

Phil Bagwell

Hash Trees with nearly ideal characteristics are described. These Hash Trees require no initial
root hash table yet are faster and use significantly le »ace than chained or double hash tree
dent of ke
1 and
), first ed i t and
5, Bagwell [2000], form the underlying data structure. The concept is
k or distributed storage to obtain an algorithm that achiev
n 80 p nt disk bl
ns ¢ E inear Hashing, Litwin, Neimat, and Schneider [1¢
R.Bayer anc T 72]. In addition two further applications of AMTs are briefly
atch tables and IP Routing tabl E of the algorithms
m ble to contemp: implementations but

iptors: H.4.m [Information Systems|: Mi laneous

General Terms: Hashing,Hash Tables,Row Displacement,Searching, Database, Routing, Routers

1. INTRODUCTION

e Hash Array Mapped Trie (HAMT) is based
and storing the key in a trie based on thi
to implement the required structure effic
alternative to contempo
ibe how it is used to develop Hash Trees

the initial root hash table or incurring the high cost of dynamic resizing to achieve
an ptable performs were first developed by Fredkin [1960] recently
implemented elegantly by Bentley and Sedgewick [1997] as the Ternary Search
Trees(TST), and by Nilsson and Tikkanen [1998] as Level Path Compressed(LPC)
tries. AMT performs 3-4 times faster than TST using 60 percent less space and are
faster than LPC tries.
During a searc

a key

hash bits until a new hash is differentiated from previously stored ones. It will be
shown that the methods for Insert, Search and Delete are fast and independent of

Hash Array Mapped Trie

Implement "Unordered Set/Map”, "Hash
Set/Map”, "Dictionary”

"Trie"

/I Tries were first described by René de la
Briandais in 1959. The term trie was coined
two years later by Edward Fredkin, who
pronounces it /'tri:/ (as "tree”), after the
middle syllable of retrieval. However, other
authors pronounce it /'trai/ (as "try”), in an
attempt to distingquish it verbally from "tree”.

Hash Array Mapped Trie

Using hash values as indices

hash('n') — 01 00

HAMT Operations

O(log(n))

¢ Random access
e Delete
e |nsert

Common
Optimizations

Left Shadow

You don't need to allocate what is not there

W .\-

Hierarchical vs Flat

Performance Tradeoff of Node Size

Advantage of e Less indirection
Small Nodes e Better cache locality
e |Less copy Advantage Of Big

Nodes

0 o ULk WD

el el
U WN B~ OV

"Transient"

e Convert to to imperative data structure

temporarily
e Clojure example:

(defn vrange [n]
(loop [1 0 v []]
(if (< i n)
(recur (inc i) (conj v 1))

v)))

(defn vrange2 [n]
(loop [1 0 v (transient [])]
(1f (< i n)
(recur (inc i) (conj! v 1))
(persistent! v))))

(def v (1000000))
(def v2 (1000000))

Persistent Data Structure
Advantages

e Minimum copying
e Compact history

e Fast comparison

e Thread safe for free

Persistent Data Structure
Disadvantages

e Performance overhead
e Shared ownership (need garbage collection)

Some other interesting data
structures

e Persistent red-black tree

e Finger Tree

o leftist heap, Binomial Heaps, Brodal Queue (Priority
Queue)

e Physicists Queue, Banker Queue, and Real-time Queue
(Lazy Queue)

Resources

Purely functional R
., ris Okasaki
I]ﬂtﬂ 5’[I‘IJ|ItIJFES Purely Functional Data
Structures

Chris Ohasahi 0SERs
P p https://www.amazon.com/Pu
oy rely-Functional-Data-
Structures-

Okasaki/dp/0521663504

https://www.amazon.com/Purely-Functional-Data-Structures-Okasaki/dp/0521663504

Resources

Dr. Matthew Hammer
CSCl 4830-016 Principles of
Functional Programming
http://matthewhammer.org/course

s/pfp-s18/

http://matthewhammer.org/courses/pfp-s18/

Thank you!

